Self-orthogonal designs
نویسندگان
چکیده
منابع مشابه
Some Optimal Codes From Designs
The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.
متن کاملOn a 5-design related to a putative extremal doubly even self-dual code of length a multiple of 24
By the Assmus and Mattson theorem, the codewords of each nontrivial weight in an extremal doubly even self-dual code of length 24m form a self-orthogonal 5-design. In this paper, we study the codes constructed from self-orthogonal 5-designs with the same parameters as the above 5-designs. We give some parameters of a self-orthogonal 5-design whose existence is equivalent to that of an extremal ...
متن کاملA graph-theoretic proof of the non-existence of self-orthogonal Latin squares of order 6
The non-existence of a pair of mutually orthogonal Latin squares of order six is a well-known result in the theory of combinatorial designs. It was conjectured by Euler in 1782 and was first proved by Tarry [4] in 1900 by means of an exhaustive enumeration of equivalence classes of Latin squares of order six. Various further proofs have since been given [1, 2, 3, 5], but these proofs generally ...
متن کاملOrthogonal Designs of Kharaghani Type: II
H. Kharaghani, in "Arrays for orthogonal designs", J. Combin. Designs, 8 (2000), 166-173, showed how to use amicable sets of matrices to construct orthogonal designs in orders divisible by eight. We show how amicable orthogonal designs can be used to make amicable sets and so obtain infinite families of orthogonal designs in six variables in orders divisible by eight.
متن کامل